Respuesta :
Using this equation, we get that it would take 1612 years for only 5 grams to be present.
Substituting 5 for R, we have
[tex]5=10e^{-0.00043t}[/tex]
Dividing both sides by 10,
[tex]\frac{5}{10}=\frac{10e^{-0.00043t}}{10} \\ \\0.5=e^{-0.00043t}[/tex]
Taking the natural log of both sides, we have
[tex]\ln{0.5}=\ln{e^{-0.00043t}} \\ \\ \ln{0.5}=-0.00043t[/tex]
Dividing both sides by -0.00043, we have
[tex]\frac{\ln{0.5}}{-0.00043}=t \\ \\1611.9=t \\ \\1612\approx t[/tex]
Substituting 5 for R, we have
[tex]5=10e^{-0.00043t}[/tex]
Dividing both sides by 10,
[tex]\frac{5}{10}=\frac{10e^{-0.00043t}}{10} \\ \\0.5=e^{-0.00043t}[/tex]
Taking the natural log of both sides, we have
[tex]\ln{0.5}=\ln{e^{-0.00043t}} \\ \\ \ln{0.5}=-0.00043t[/tex]
Dividing both sides by -0.00043, we have
[tex]\frac{\ln{0.5}}{-0.00043}=t \\ \\1611.9=t \\ \\1612\approx t[/tex]
It will take 700 years to remain only 5 grams of radium
The function is given as:
[tex]R=10e^{-0.00043t[/tex]
When the remaining gram is 5 grams, the equation of the function becomes
[tex]5=10e^{-0.00043t[/tex]
Divide both sides by 10
[tex]0.5=e^{-0.00043t[/tex]
Take the logarithm of both sides
[tex]\log(0.5)=-0.00043t[/tex]
Using a calculator, evaluate log(0.5)
[tex]-0.30102999566 =-0.00043t[/tex]
Divide both sides by -0.00043t
[tex]t = 700.069757349[/tex]
Approximate
[tex]t = 700[/tex]
Hence, it will take 700 years to remain only 5 grams of radium
Read more about exponential functions at:
https://brainly.com/question/11464095
Otras preguntas
Convert the population of Texas to Scientific notation. There are 28,000,000 people living in Texas.
Convert the population of Texas to Scientific notation. There are 28,000,000 people living in Texas.